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High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with mag-
netic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and
alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data
acquisition. Here, both effects are described analytically, and predicted values for measured transport
during laminar flow through a straight, 3.2-mm diameter pipe are validated using two-dimensional
(2D) constant-time images of different binary gas mixtures. Results show explicitly how measured trans-
port in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and
imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow split-
ting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising
detail that highlights the correlation between gas dynamics and lung structure.

� 2008 Published by Elsevier Inc.
1. Introduction

Magnetic resonance (MR) imaging with hyperpolarized xenon
(129Xe) or helium (3He) affords high sensitivity for measuring gas
flow in straight pipes [1,2], porous foam [3], flexible tubes [4], hu-
man airway models [2,5], and breathing patients [2]. Flow quanti-
fication, however, is challenged by rapid gas diffusion. This is
especially problematic in small conduits where diffusing gas can
readily sample shear-induced velocity gradients over the imaging
time (t). In phase-contrast MR images this has been observed to
blur laminar flow in small capillaries [1]. For a pipe of radius a,
and gas molecules with diffusion coefficient D, results show that
the degree of blurring can be significant—even over relatively short
time scales (t < a2/D). Since axial diffusion is also found to be time-
dependent [1], prior work suggests that MR measurements of gas
transport in narrow conduits provide apparent values that depend
on underlying flow structure, gas diffusion, and imaging time.

Recent work on gas-phase MR stresses its potential utility for
visualizing gas dynamics in applications ranging from toxicology
[6] and inhaled drug delivery [2] to catalytic [7] and aeronautic de-
sign [8]. In related studies, most results have been acquired in lar-
ger conduits where the imaging time (t) is short relative to gas
diffusion and flow structure. Blurring effects have therefore been
ignored, and to a large extent, good agreement between measured
flow and predictions based on computational fluid dynamics (CFD)
has been observed [2,5,8]. Even in these studies, however, subtle
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differences are apparent in regions where strong velocity gradients
exist on diffusive length scales. In small capillaries, Monte Carlo
simulations suggest that these differences might be attributable
to diffusion-mediated sampling of multiple flow streams during
image collection [1]. Nevertheless, no analytical description of this
phenomenon has yet been formulated. Furthermore, no measure-
ments of 3He flow in narrow conduits of complex shape have yet
been reported. It is therefore unclear what information might be
available, or to what extent it might be limited by diffusion-med-
iated effects.

Prior work on gas transport in small capillaries employed one-
dimensional (1D) flow imaging, axial diffusion was not resolved,
and results were understood through Monte Carlo simulations
[1]. Here, imaging is extended to two- and three-dimensions to
facilitate transport measurements in more complex systems, and
apparent gas dynamics in straight pipes is described analytically
to provide deeper physical insight. Analytical theory explicitly ac-
counts for gas dynamics, incorporates the details of MR data acqui-
sition, and is shown to accurately predict the combined effects of
flow and diffusion over a range of experimental conditions. In live
rats, these effects are found to obscure laminar flow in pulmonary
airways, thereby, confounding any direct comparison with CFD
predictions. Despite this limitation, however, 3D images of
in vivo airflow are shown to provide a detailed view of pulmonary
airflow patterns not yet seen. Hallmarks include the visualization
of flow streaming similar to that recently reported in humans
[2], and detailed flow splitting at airway branches that may pro-
vide a quantitative basis for assessing ventilation to each of the
rat’s five lung lobes.
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2. Theory

2.1. Structure and function of constant-time imaging (CTI)

During MR imaging random Brownian motion causes irrevers-
ible signal loss that reduces sensitivity and fundamentally limits
resolution [9–11]. Constant-time imaging (CTI) minimizes both ad-
verse effects [12,13], and for this reason, is increasingly used for
gas visualization [6,8,14,15]. Its simple structure and function is
also easily understood, and here, this facilitates a rigorous descrip-
tion of measured gas transport.

During a 2D CTI experiment like that shown in Fig. 1, spatial
information within the excited slice is phase-encoded along each
planar axis. Repeated application of the pulse sequence using dif-
ferent phase encoding gradients is then utilized to collect a mo-
tion-sensitive image. Subsequent analysis of images acquired
using different motion-sensitizing gradients then provides a basis
for local transport measurements [16–18].

As with all MR imaging methods, a finite time is typically re-
quired to encode location and motion. In the context of Fig. 1, this
means that excited gas molecules can diffuse across shear-induced
velocity gradients after their location is initially encoded, and mo-
tion-sensitizing gradients are applied. Direct correspondence be-
tween location and dynamics is therefore compromised, and this
necessarily blurs measured transport. The following theory de-
scribes this loss of correspondence and its ensuing affects on mea-
sured transport in constant-time images.

2.2. Effects of gas motion on 2D CTI

In this study the slice-select gradient in Fig. 1 is aligned with the
central axis of a straight, circular pipe, and 2D phase encoding is
employed for visualizing 3He gas over its cross section. Axial flow
and diffusion is then measured using the spatially resolved MR sig-
nal (S) from two different images—one acquired with motion sen-
sitizing gradients applied along the slice-select axis (SG), and the
other without (S0).

During data acquisition molecular motion through applied gra-
dients alters the relative phase / and attenuation b of the spatially
resolved MR signal at each location r0 in a motion-sensitized image
[16–18]. If 2D phase encoding pulses are short, and gas location is
assumed to be instantaneously encoded at t = 0 defined in Fig. 1,
Fig. 1. Timing diagram for 2D CTI. Since slice-select gradients (checkered) are
velocity compensated, moving gas is refocused before motion-sensitizing gradients
(solid-black) are applied to measure gas dynamics along the same axis. Motion
sensitization, however, occurs after a 2D phase encoding gradient (shaded) is
applied to resolve planar location at t = 0. Consequently, if gas molecules traverse
multiple flow streams during the evolution time (t), direct correspondence is lost
between planar location and measured transport.
then relative signal changes can be conveniently expressed as an
ensemble average (hi) over all molecules initially encoded at r0,
such that [16,19]—

SG

S0
¼ ei/�b ¼ eic

R s

0
FðtÞmðtÞ dt

� �
: ð1Þ

Here, c denotes the gyromagnetic ratio, and v(t) represents each
molecule’s instantaneous axial velocity. Other parameters include
the time (s) when the NMR receiver is turned on, and the time-inte-
gral of motion-sensitizing gradients—

FðtÞ ¼
Z t

0
Gðt0Þdt0; ð2Þ

where G(t) is their time-dependent amplitude, and F(s) is taken to
be zero at the start of data acquisition [16,20,21].

Since a large number of molecules normally contribute to the
spatially resolved MR signal it is useful to relate relative changes
to their underlying statistical dynamics [16,19]. In practice, this
is facilitated by exploiting Kubo’s generalized cumulant expansion
theorem, such that [20,21]—

i/� b ¼ k ¼
X1
n¼1

ðicÞn
Z s

0
dt1

Z t1

0
dt2 � � �

Z tn�1

0
dtnhvðt1Þvðt2Þ

� � � vðtnÞicFðt1ÞFðt2Þ � � � FðtnÞ: ð3Þ

In this expression angular brackets h ic denote cumulant averages
over the enclosed quantity. Generally, these completely define
underlying statistics, are calculated in terms of ensemble averages
(h i), and are sometimes referred to as connected averages since they
vanish if any component (i.e. velocity at different times) is uncorre-
lated with the others [22,23]. For convenience, the first three cumu-
lants are defined below, and expressions for higher orders are found
elsewhere [22,23]—

hmðt1Þic ¼ hmðt1Þi; ð4Þ
hmðt1Þmðt2Þic ¼ hmðt1Þmðt2Þi � hmðt1Þihmðt2Þi; ð5Þ
hmðt1Þmðt2Þmðt3Þic ¼ hmðt1Þmðt2Þmðt3Þi � hmðt1Þihmðt2Þihmðt3Þi

� hmðt2Þihmðt1Þmðt3Þi � hmðt3Þihmðt1Þmðt2Þi
þ 2hmðt1Þihmðt2Þihmðt3Þi: ð6Þ

Eq. (3) shows that relative phase (/) is determined by the imaginary
part of the cumulant expansion (Imk), that relative attenuation (b) is
determined by the real part (�Rek), and emphasizes how both are
influenced by motion sensitizing gradients and the statistical dynam-
ics of gas motion along their applied direction. In practice, this general
description serves as a convenient theoretical construct that has pre-
viously been employed for other MR transport studies [20,21]. Here,
integrals are explicitly time-ordered such that s > t1 > t2 > � � � tn [22–
24]. Generally, this facilitates the analysis of time-dependent pro-
cesses [24]. Utilization in the current study, however, is only valid
for stationary transport processes since MR images are acquired over
time using repeated data acquisitions. Physically, this means that
underlying dynamics can only depend on the time intervals between
successive observations—rather than the exact time each occurs [25].
Use of Eq. (3) also assumes that relative changes in either image phase
or attenuation are dominated by molecular displacements during
motion sensitizing gradient pulses, and that the effects of motion dur-
ing spatial encoding are relatively small. To insure this as much as
possible, slice-select gradients in Fig. 1 are velocity compensated,
and phase encoding is kept as short as possible [26].

2.3. The statistical dynamics of laminar pipe flow

During constant laminar flow in a straight, circular pipe, moving
material is directed down its central axis with a speed (V) that var-
ies with radial distance (r), such that [27,28]—



Fig. 2. Space-time trajectories for the second-order, joint probability density
function (W2).
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VðrÞ ¼ Vmaxð1� r2=a2Þ: ð7Þ

Here, a represents the pipe’s radius and Vmax is twice the average
flow speed across the pipe [28].

Generally, Eq. (7) represents a specific solution to the Navier–
Stokes equation that is valid when the Reynolds number is less
than �2100, gas density is constant, flow is steady, Newton’s law
of viscosity applies, and effects near the pipe’s entrance and exit
are neglected [28]. In the current context, V(r0) describes the aver-
age axial velocity (hm(t = 0)i) when gas is initially encoded at some
radius r0. At later times, hv(t)i changes as encoded gas diffuses
down the pipe and across streamlines. To formulate a statistical
description of this time-dependent motion it is helpful to think
of Eq. (7) as a stationary flow field that is sampled by randomly dif-
fusing gas molecules. If r(t) is a stationary Markov process describ-
ing each molecule’s random position in the absence of flow [25],
v(t) may be thought of as having two distinct contributions. One
arises from the flow field itself and is represented using the ran-
dom function V(r(t)). The other describes each molecule’s random
axial velocity as it diffuses down the pipe in the absence of flow. If
this is represented by u(t), then net axial motion is expressed as a
simple superposition—

vðtÞ ¼ uðtÞ þ VðrðtÞÞ: ð8Þ

In the absence of flow (i.e. when V = 0), Eq. (8) shows that axial mo-
tion is governed by the random velocity fluctuations u(t) that diffus-
ing gas normally exhibits. During flow, diffusion mediated changes
in location r determine the precise flow rate a diffusing gas mole-
cule must experience. When diffusion is slow relative to flow struc-
ture and imaging time, V(r(t)) � V(r0), and Eq. (8) represents the
traditional description of constant flow and diffusion that is widely
used for liquid-state studies [16–19]. Here, a more general formula-
tion is proposed by accounting for changes in flow velocity that oc-
cur as gas diffuses across streamlines on the imaging time scale.
Generally, since a finite time is required to diffuse from one location
r to the next, changes in flow velocity are mediated by the dynamics
of Brownian displacements and do not occur instantaneously.
Rather, causality is insured by an accurate description of gas diffu-
sion and the likelihood that changes in location can occur over any
given timescale.

Implicit in Eq. (8) is the assumption that axial velocity fluctua-
tions from molecular diffusion down the pipe (u) are statistically
independent of the axial flow (V). Physically, this is not unreason-
able since the correlation time for u(t) is much shorter than time
needed to diffuse across streamlines. One practical consequence
of this is that cumulants for statistically independent processes
are additive [22]. As a result,

hvðt1Þvðt2Þ � � � vðtnÞic ¼ huðt1Þuðt2Þ � � �uðtnÞic
þ hVðrðt1ÞÞVðrðt2ÞÞ � � �VðrðtnÞÞic; ð9Þ

and effects from axial diffusion (u) and flow (V) can be treated sep-
arately, such that—

k ¼ ku þ kV : ð10Þ

Since u(t) describes axial velocity fluctuations for diffusing gas in
the absence of flow, and these are completely random on the imag-
ing time scale, their average (hu(t)i) is zero [19]. A statistical
description of unrestricted diffusion as a Gaussian random process
also shows that hu(t1)u(t2)i = 2D f(t2 � t1), where D is the free (unre-
stricted) diffusion coefficient and f is the dirac delta function [19].
Since all cumulants other than second-order (n = 2) are zero for a
Gaussian random process [23], substitution of previous results into
Eq. (3) shows that [19]—

ku ¼ �Db; ð11Þ

where the so-called gradient factor (b) is c2
R s

0 F2ðt0Þdt0.
Eq. (11) describes the contribution axial diffusion makes to the
cumulant expansion (ku) in Eq. (10). The other contribution (kV)
arises from flow and is mediated by Brownian displacements
across streamlines. To describe this it is useful to express ensemble
averages over the random function V(r(t)) in terms of the station-
ary flow field V and the random position r for diffusing gas at dif-
ferent times—

hVðrðt1ÞÞVðrðt2ÞÞ � � �VðrðtnÞÞi ¼ hVðr1ÞVðr2Þ � � �VðrnÞi: ð12Þ

Here, r1 is used as shorthand notation to represent the random po-
sition for a gas molecule at a time t1 (i.e. r(t1)) after its location is
first encoded at r0. Values for r2� � �rn are similarly defined.

To evaluate the right side of Eq. (12) it is generally necessary to
define the joint probability density (Wn) for different space-time
trajectories that start from the encoded image location r0 [25,30].
The ensemble average is then taken over all possible paths that
originate from r0 and pass through specified times.

Fig. 2 shows a trajectory that is described by W2(r0jr2, t2; r1, t1)
dr2 dr1. This utilizes time-ordered notation (t1 > t2 > t3� � �tn�1 > tn)
and describes the probability for finding a gas molecule within a
small, elementary volume dr2 at (r2, t2), and then within dr1 of
(r1, t1)—after location is first encoded at r0 [25]. As a stationary
Markov process, each leg in the trajectory is statistically indepen-
dent and probabilities only depend on time intervals between suc-
cessive points [25,30]. In this case, the joint probability density
function for trajectories of any order (Wn) can be defined conve-
niently using the diffusion propagator P, such that [25,30]—

Wnðr0jrn; tn; rn�1; tn�1 � � � r1; t1Þ
¼ Pðr0jrn; tnÞPðrnjrn�1; tn�1 � tnÞ � � � Pðr2jr1; t1 � t2Þ: ð13Þ

Generally, n propagators are used starting from the leftmost on
the right side of the equality. Functionally, P(r0jr, t)dr describes
the conditional probability that a gas molecule initially at r0

will be within dr of r after a time t (19, 25, 30). Other prop-
agators in Eq. (13) have the same functional form, but initial
and final locations differ in order to describe all possible
trajectories.

In practice, the above considerations provide a general theoret-
ical framework for calculating ensemble averages over diffusing
gas molecules in any stationary flow field (V). The general result
for calculating the nth order ensemble average over any random
function V(r) has been used previously by others [24]—

hVðrðt1ÞÞVðrðt2ÞÞ � � �VðrðtnÞÞi ¼
Z

r1

dr1

Z
r2

dr2

� � �
Z

rn

drnVðr1ÞVðr2Þ � � �VðrnÞWnðr0jrn; tn; rn�1; tn�1; � � � r1; t1Þ:

ð14Þ
2.4. 2D diffusion propagator for a cylindrical pipe

In a straight cylindrical pipe, diffusion over its cross-section
determines how individual molecules sample the stationary flow
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field defined by Eq. (7). The propagator (P) is therefore governed
by Fick’s law, Dr2P = oP/ot, where D is the ‘free’ (i.e. unre-
stricted) molecular diffusion coefficient. This is conveniently
solved in two-dimensions (2D) using cylindrical-polar coordi-
nates (r,h), and the initial condition that P(r0,h0jr, h, t = 0)
= (1/r)f(r � r0) f(h � h0) where f is the Dirac delta function. To in-
sure probability is conserved it is also required that o=ot

R
Pðr0;

h0jr; h; tÞr dr dh is always zero. Utilization of Fick’s law and the
divergence theorem then shows that a specific solution must
satisfy oP/or = 0 at all points on the pipe’s surface. Under these
conditions the diffusion propagator can be expressed in the fol-
lowing fashion [29]—

Pðr0; h0jr; h; tÞ ¼
X1
j¼0

X1
k¼1

A2
jke�b2

jkDt=a2
Jjðbjkr=aÞJjðbjkr0=aÞ cosðjðh� h0ÞÞ:

ð15Þ

In this equation Jj denotes the jth order Bessel function, and bjk is
the kth root of—

d=dxðJjðxÞÞ ¼ 0: ð16Þ

In addition, for j 6¼ 0

A2
jk ¼

2
pa2

� �
b2

jk

J2
j ðbjkÞðb2

jk � j2Þ
; ð17Þ

otherwise

A2
0k ¼

1
pa2

� �
1

J2
0ðb0kÞ

: ð18Þ

A 2D analogy for Eq. (14) is then used to express the nth-order
ensemble average of axial flow velocity in a straight pipe—

hVðrðt1ÞÞVðrðt2ÞÞ � � �VðrðtnÞÞi ¼
Z

r1

Z
h1

r1 dr1 dh1

Z
r2

Z
h2

r2 dr2 dh2

� � �
Z

rn

Z
hn

rn drn dhnVðr1ÞVðr2Þ

� � �VðrnÞWnðr0; h0jrn; hn; tn; rn�1; hn�1; tn�1; . . . r1; h1; t1Þ: ð19Þ

Here, radial integrals vary from 0 to a, and integrals over h are from
0 to 2p.

2.5. Defining apparent flow and diffusion

In most liquid-state applications molecular diffusion is not ra-
pid enough to move excited nuclei across different flow streams
during the imaging time. If intra-voxel dephasing is neglected,
the relative phase for the spatially resolved MR signal at location
r0 in a flow-encoded image (/(r0)) is just a �vðr0Þ, where
a ¼ c

R s
0 Fðt0Þdt0, and �vðr0Þ represents the average velocity over

the resolved voxel. A plot of /(r0) versus a at each location is there-
fore commonly employed for measuring regional fluid flow [16–
19]. Here, the same approach is used to measure the apparent
gas velocity (mapp) at each image location (r0). Predictions based
on the numerical evaluation of the cumulant expansion (k) are
then formulated using the same definition, such that—

vappðr0Þ ¼
/ðr0Þ

a
¼ Imk

a
: ð20Þ

Similar rationale is used for defining the apparent gas diffusion
coefficient—

Dappðr0Þ ¼
bðr0Þ

b
¼ �Rek

b
: ð21Þ

Particularly, since Eq. (11) shows that this yields a value for the gas
diffusion coefficient (D) in the absence of flow.
3. Materials and methods

3.1. 3He gas generation, delivery, and characterization for pipe flow

Recent work describes our apparatus for generating hyperpolar-
ized (HP) 3He [31]. Immediately before MR experiments, 0.4–0.5 L
of 3He gas with �40% polarization was released into a 2-L Tedlar
bag (Jensen Inert Products, Coral Springs, FL) that resided inside
an acrylic box located within the fringe field of the imaging mag-
net. During flow experiments, the box was pressurized to push
HP gas out of the bag at a constant rate. Immediately after leaving,
3He gas was diluted to �10-volume-percent by mixing it with an-
other flow stream consisting of either N2 or C3F8 gas. The resulting
mixture then traveled into a Tygon hose that was �1 m long, had
an inner diameter of 3.2 mm, and carried gas straight through
the magnet bore. Generally, use of different binary gas mixtures
provided a convenient way of altering the rate of 3He diffusion so
impact on acquired images could be examined.

During gas delivery the volumetric flow through the Tygon tube
was measured to be �240 cc/min. This was monitored at the tube’s
outlet by bubbling each binary gas mixture into a (inverted) grad-
uated cylinder filled with water. Measurements with and without
3He then allowed determination of delivered gas fractions, and
facilitated fine adjustment to achieve described conditions.

At �240 cc/min the average axial flow velocity in the Tygon
tube ð�v ¼ Vmax=2Þ was �0.5 m/s. At standard temperature and
pressure (STP), the kinematic viscosity (vk) of nitrogen is
1.4 � 10�4 m2/s, and vk = 1.5 � 10�5 m2/s for C3F8 [32]. The Rey-
nold’s number ðRe ¼ 2a�v=vkÞ for dilute mixtures with 3He is there-
fore about 10 and 100, respectively. Since this is much lower than
the transitional value to turbulance (�2100), flow under the spec-
ified conditions is expected to exhibit the radial velocity profile de-
fined by Eq. (7).

Prior to imaging gas transport, a non-imaging gradient-echo
experiment was employed to measure the diffusion coefficient
for diluted 3He in N2 and C3F8 mixtures. To avoid flow-enhanced ef-
fects, motion-sensitizing gradients were applied transverse to the
flow axis using a bipolar pulse pair [17] similar to that depicted
in Fig. 1. The gradient pulse width (d) was 0.5 ms and the lead-
ing-edge pulse-separation (D) was 0.6 ms. The measured 3He diffu-
sion coefficient transverse to flow in a 10-volume-percent mix
with N2 was 0.78 ± 0.04 cm2/s. For the same fraction of 3He in
C3F8 the measured value was 0.36 ± 0.02 cm2/s. Since the diffusion
time (D � d/3) was only �0.4 m, the root-mean-square displace-
ment ð

ffiffiffiffiffiffiffiffi
2Dt
p

Þ for diffusing 3He gas was �250 and 170 lm for mix-
tures with N2 and C3F8, respectively. Given that both were much
smaller than the tube diameter (3.2 mm), potential effects stem-
ming from restricted diffusion on the measurement time-scale
were negligible. This was confirmed later using the Chapman–En-
skog theory of binary gas diffusion—which predicts similar 3He dif-
fusion coefficients [33].

3.2. 2D CTI of axial gas transport in a straight pipe

Visualization of 3He axial gas transport was achieved using the
2D, CTI experiment depicted in Fig. 1. Imaging was performed at
2.0 T using a UNITYPlus console (Varian, Palo Alto, CA), a home-
built 7-cm diameter radio-frequency volume coil, and a 30-cm
diameter horizontal-bore magnet (Oxford Instruments, Oxford,
UK) equipped with actively shield gradients characterized by
60 ls rise-times (Resonance Research Inc., Billerica, MA). During
gas delivery, constant-time images were collected using a
1.0 cm � 1.0 cm field-of-view (FOV), and a 6.0-mm thick slice that
was transverse to the central axis of the Tygon tube. The imaging
pulse sequence utilized a 20 ms repetition time (TR), a receiver
bandwidth of 1 kHz, and 64 phase-encoding steps along each pla-



Fig. 3. Typical respiratory maneuver for in vivo airflow imaging. Boxes along top
show gas delivery events and the trace depicts the rate of flowing gas (cc/s) when
measured with a calibrated pneumotach. The O2/N2 is a 30:70 volume mix that is
delivered using a drive pressure of �11 cm H2O, and the He/N2 is about a 70:30
volume mix (delivered at �10 cm H2O). Imaging occurs in the shaded region during
a push of oxygen (O2). The O2 is delivered using a drive pressure of about 33 cm
H2O, and constant flow is achieved by forcing gas through a commercial restrictor
(Airtronics, Bellevue, WA, 0.01200 orifice diameter, model # F2815-121-B85).
Generally, differences in drive pressure and flow reflect the unique delivery route
and plumbing for each gas mixture and do not reflect actual pressure at the trachea.
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nar direction. In all cases, the bipolar gradient was characterized by
a pulse-duration (d) of 300 ls, and two images were acquired—one
with no motion-sensitizing gradient and the other with a finite
amplitude (G).

To examine the effects of encoding duration, imaging was re-
peated using two different leading-edge pulse-separations (D).
For D = 1 ms, the gradient amplitudes were 0 and 4 G/cm; and
for D = 4 ms, they were 0 and 1 G/cm. Generally, this insured flow
sensitivity (a) was the same. For each D-value, images were ac-
quired in an interleaved fashion such that each point in k-space
was sampled sequentially using both motion-sensitizing gradient
amplitudes. The phase encode gradient was then incremented after
2 averages. Because two interleaved images were acquired, relative
image attenuation was directly attributed to gas transport and
was uninfluenced by either T1- (signal loss inside the Tedlar bag)
or T2-relaxation.

After raw data collection, images were reconstructed on a
128 � 128 matrix using a phase-sensitive, 2D Fourier Transform.
Analysis of images acquired without motion sensitizing gradients
showed that the average signal-to-noise ratio (SNR) over the pipe
was �100. Apparent flow velocity (Eq. (20)) was determined at
each matrix location with an SNR P50 by measuring the phase dif-
ference between data acquired with and without motion sensitiz-
ing gradients. Apparent diffusion (Eq. (21)) was determined by
measuring relative attenuation. In both cases, gradient rise-time
was ignored and motion-sensitizing gradient pulses in Fig. 1 were
assumed to be square in shape. In this case, a = cGDd [17,18],
b = c2G2d2(D � d/3) [19], and it is noted that the gyromagnetic ratio
(c) for 3He is 20,376 rad/(G s) [34]. Since apparent diffusion is
determined by measuring relative attenuation, imaging gradients
make no contribution to the b-value used in Eq. (21) [35]. Possible
cross-terms with applied slice selection gradients are also zero be-
cause they refocus spins before motion-sensitizing gradients are
applied [35].

3.3. Simulated pipe dynamics

Apparent transport in a straight pipe was predicted in Mathem-
atica using Eqs. (20) and (21). Related code generally involved the
numerical evaluation of the cumulant expansion (kV) and multi-
dimensional integrals over the diffusion propagator defined in
Eq. (15). The Appendix shows that significant simplification is pos-
sible because only the j = 0 terms contribute to angular integrals
that define ensemble averages in Eq. (19), and that each of these
is 2p.

To optimize the speed and accuracy of numerical calculations,
apparent transport was evaluated multiple times using the first
three terms in the cumulant expansion of Eq. (3) (n = 3). Generally,
each evaluation was performed using either—(1) a different sup-
port (i.e. discrete sampling) for numerical integration, or (2) a dif-
ferent number of k-terms in the expansion for the diffusion
propagator (Eq. (15)). The minimum values need for results to
change less than a few percent after successive doublings were
then chosen. This showed that only �32 k-terms were needed to
achieve computational convergence comparable to the uncertainty
of experimental data.

3.4. 2D airflow imaging in ventilated rats

Pulmonary airflow was visualized in Male Sprague–Dawley rats
(Charles River Laboratories, Wilmington, MA) using 2D CTI and
protocols approved by the Institutional Animal Care and Use
Committee at Pacific Northwest National Laboratory. Prior to
experiments, rats were anesthetized using 3–4% isoflurane in air.
A tracheotomy was then performed and a 14-gauge catheter tube
was inserted into the exposed trachea. After securing with surgical
string, each animal was placed in a supine position and its tracheal
tube was attached to the mouthpiece of a home-built, computer-
controlled, ventilator similar to described designs [36,37]. To facil-
itate animal positioning, the rat and mouthpiece were both se-
cured on a wooden tray that also accommodated a NMR
compatible ECG/temperature monitoring unit (SA Instruments
Inc., Stony Brook, NY, Model 1025). The tray was then slid onto a
mating rail that was located inside a double-tuned (1H/3He) RF coil
[38].

During imaging, body temperature was maintained by circu-
lated warm air inside the magnet bore. Body temperature and
heart rate were monitoring using a rectal probe and ECG elec-
trodes, respectively. To avoid possible RF interference, physiologi-
cal data were fed via fiber optic to a dedicated laptop. Typically,
rectal temperature was about 35 �C, and pulse rate was between
250 and 330 beats per minute.

Fig. 3 shows a typical respiratory maneuver used for imaging
pulmonary airflow. During imaging, the maneuver was repeated
every 1.6 s, and the pulse-sequence was applied during inhalation
with a stationary flow rate. Delivered gas mixtures and drive pres-
sures are specified in the caption. The trace in Fig. 3 shows the flow
velocity through a calibrated pneumotach that was placed be-
tween the ventilator’s mouthpiece and the attached rat [39]. It
shows that gas speed is constant over the imaging window. Gener-
ally, in vivo CTI acquisition is similar to that used for visualizing
pipe flow. In vivo imaging differs in that—(1) a thinner slice is em-
ployed to reduce volume averaging, (2) a lower flip angle is used to
avoid saturation of inflowing magnetization, and (3) a shorter TR is
employed to allow 32 acquisitions during the constant flow win-
dow. Specific values for each are therefore specified in later figures.

3.5. 3D imaging of rat pulmonary airway structure and flow

Extending MR imaging to 3D for visualizing pulmonary struc-
ture and flow in ventilated rats exploited two recent technical
developments. First, more 3He gas was generated by using larger
oblong polarization cells and two parallel lasers. Two cells (each
containing �0.8 L) could then be pumped simultaneously [31].
The second development was to employ a hybrid, radial imaging
scheme for more efficient k-space sampling [31]. The 3D pulse-
sequence employs a low flip-angle (�10�) excitation that is
followed by bi-polar motion-sensitizing gradient like that shown
in Fig. 1. Spatial location is then encoded using a 2D radial



Fig. 4. Predicted average axial flow velocity hv(t)i in cm/s for dilute 3He gas after
location in a straight tube is initially encoded at t = 0 using the CTI pulse sequence
shown in Fig. 1. Flow dynamics were calculated for a 10% volume mixture of 3He in
N2 using Eq. (23), a tube radius (a) of 0.16 cm, a maximum flow velocity (Vmax) of
94.4 cm/s, and 0.78 cm2/s for the 3He diffusion coefficient (D) in the binary gas
mixture. The red line shows the average flow velocity (Vmax/2 = 47.2 cm/s) across
the pipe, and this corresponds to a volume flow rate of approximately 228 cc/min.
The dashed line shows the average axial velocity predicted for gas molecules
starting from the middle of the tube (r = 0), and the solid line shows the average
velocity for gas initially encoded at the tube’s edge (r = a). The shaded region
highlights the sampling area of motion sensitizing gradients (i.e. non-zero F(t)) for
conditions specified in Fig. 5.
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sampling scheme in conjunction with standard phase encoding
along the orthogonal direction [31].

Unlike in 2D imaging studies, rats used for 3D visualization
were orally intubated. Prior to intubation, rats were administered
0.02 mL/kg BW glycopyrrolate subcutaneously to inhibit oral
secretions and facilitate insertion of an endotracheal tube. After
10–15 min, the animals were then anesthetized with isoflurane
and placed supine on a tilting intubation table. Approximately,
0.02 mL of lidocane was then applied directly to the larynx. Shortly
thereafter, a 14 gauge catheter tube was orally inserted into the
trachea. The tube was pre-cut to a length to assure that it would
pass through the larynx but not come near the carina. Once in-
serted, the catheter tube was connected to the ventilator.

In the current study gas from two polarization cells was used
for each rat. Gas from the first cell was used to acquire a high-res-
olution view of pulmonary airways. Raw data were collected using
128 phase encodes and 200 radial projections with 128 complex
points. The FOV was 6.4 cm on a side and the acquisition band-
width was 51 kHz. The hybrid pulse sequence utilized a 500 ms
hard RF pulse together with an 8 ms TR and no motion encoding.
The acquired signal consisted of an asymmetric gradient echo that
refocused 1.085 ms after the center of the RF excitation. Image
reconstruction was then done as before [31]. During the breathing
maneuver shown in Fig. 3, 32 phase-encoded projections were ac-
quired during inhalation with a stationary flow rate. The maneuver
was then repeated 800 times for a total acquisition length of
21 min. To reduce possible blurring, the O2 push was reduced by
decreasing the drive pressure to �4 cm H2O.

After gas in the first 3He cell was used for high-resolution imag-
ing, O2 drive pressure was increased to the level specified in Fig. 3.
Then, the second 3He cell was utilized for lower-resolution, 3D flow
visualization in the same animal. Raw data were collected using 4
interleaved, 3D acquisitions that employed 32-phase-encodes and
128 radial projections comprised of 128 complex points. One 3D
acquisition utilized 4 G/cm for motion sensing along the magnet’s
x-axis, another used 4 G/cm along its y-axis, the third employed
3 G/cm along z, and finally, the fourth had none. With 32 acquisi-
tions for every breathing maneuver, data collection required 512
repetitions for a total acquisition time of �14 min. All 3D images
used the same TR (8 ms), had a refocus time of 2.385 ms for the
collected echo, and employed the same timing for motion-sensitiz-
ing gradients (d = 0.3/D = 1.0 ms).

4. Results and discussion

4.1. Simulated pipe flow and the Gaussian approximation

Eq. (19) shows that the average axial flow velocity for an
ensemble of molecules originally at r0 inside a straight cylindrical
pipe varies with time, such that—

hvðtÞi ¼
Z a

r¼0

Z 2p

/¼0
Pðr0jr;/; tÞVðrÞr dr d/: ð22Þ

Substituting with Eq. (15) and evaluating integrals then gives—

hvðtÞi ¼ Vmax

2
þ 4pVmaxa2

X1
k¼2

A2
0k

b2
0k

e�b2
0kDt=a2

J0ðb0kr0=aÞJ2ðb0kÞ: ð23Þ

The time-dependence embodied by Eq. (23) shows that the average
axial flow velocity for 3He gas originally encoded at r0 (in a CTI im-
age) approaches Vmax/2 at long times. At shorter times, the precise
behavior depends on the initial radial position (r0), the 3He diffusion
coefficient (D), and the time t after spatial encoding (see Fig. 1). This
general behavior is illustrated in Fig. 4 where hv(t)i is plotted as a
function of time for molecules starting at the center of the pipe
(dashed) and its edge (solid). Projected behavior shows that gas
molecules near the edge accelerate to the average flow velocity
(Vmax/2.0), whereas molecules at the center slow to the same value.
Generally, the approach to average flow is more rapid at the edge
because the radial derivative of V(r) in Eq. (7) is steeper at that loca-
tion. Consequently, as gas diffuses across different flow streams,
molecules initially at the edge experience a larger change in veloc-
ity—that then drive’s their more rapid approach to the average axial
flow speed (Vmax/2).

In practice, the temporal dependence of hv(t)i has a significant
impact on the apparent axial velocity (mapp) calculated using Eq.
(20). Mathematically, this is because hv(t)i defines the first-order
(n = 1) term in the cumulant expansion of Eq. (3). Since this is
imaginary it defines the lowest order contribution to apparent
velocity. After integration (over F(t)) the result is used in Eq. (20)
to formulate a first-order approximation to the apparent velocity
(1mapp). Since Eq. (20) shows that only imaginary terms contribute
to mapp, and Eq. (3) shows these are all odd, the next highest order
contribution comes from the third term in the cumulant expansion
(3mapp), such that mapp = 1mapp + 3mapp + � � �

A plot of 1mapp is shown in Fig. 5 as a function of radial location
in a 3.2-mm diameter straight pipe. Predicted results are formu-
lated using t = 0.425 ms as the start of motion encoding, G = 4 G/
cm, D = 1.0 ms, d = 0.3 ms, and the same conditions specified in
Fig. 4. The axial velocity profile predicted by Eq. (7) is also shown
in Fig. 5 for comparison. Differences illustrate how rapid gas diffu-
sion blurs the apparent axial flow so it no longer resembles predic-
tions based solely on the Navier–Stokes equation. By comparison,
apparent axial flow is seen to be significantly slower than Eq. (7)
predicts at the center of the pipe, and is faster at the pipe edge—
as expected from the behavior of hv(t)i seen in Fig. 4.

Fig. 5 also shows a plot for the third-order contribution to the
apparent flow velocity (3mapp). This is seen to be comparatively
small and provides valuable insight into the relative influence of
higher order terms in the cumulant expansion. From a practical
standpoint, this is important for determining how many terms in
Eq. (3) are necessary for making accurate predictions. If too few



Fig. 5. Predicted axial velocity for gas in a straight tube when bi-polar, motion-
sensitizing gradients in Fig. 1 start at t = 0.425 ms, G = 4 G/cm, D = 1.0 ms, and
d = 0.3 ms. Gas properties, tube radius, and flow conditions are specified in Fig. 4.
Predictions based on the solution to the Navier–Stokes equations (V(r) in Eq. (7)) are
plotted in black, the first-order (n = 1) approximation to apparent flow velocity
(1mapp) in Eq. (20) is shown in bold, and 50 times the third-order (n = 3) contribution
to apparent flow (3mapp) is shown in red.

Fig. 6. Apparent axial 3He gas flow in a straight, 3.2-mm diameter tube. Predictions
for apparent flow (mapp) are based on the first-order (n = 1) approximation and are
formulated using a Vmax value derived from measured volume flow. In each image,
the black plot shows the radial profile for axial flow across the tube diameter.
Average uncertainty in measured velocity for all 4 experiments is estimated to be
±1.3 cm/s using the known a-values and the measured signal-to-noise ratio in
acquired images [40].
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are used achieved accuracy will likely be insufficient, and if too
many are employed unnecessary computations will be performed.
In prior work, contributions from higher order terms were consid-
ered when the correlation time for molecular motion is much
shorter than the imaging time [20,21]. In this study, Fig. 4 shows
that motion is more slowly varying. Consequently, the relative
importance of higher order approximations needs reconsideration.

At the onset of this study the relative importance of higher or-
der contributions to the cumulant expansion would be difficult to
predict. A general formulation of motion effects is therefore formu-
lated. The benefit of this is that simplifying assumptions about rel-
ative contributions can now be made and tested directly using
1mapp and 3mapp in Fig. 5.

During the pulse-sequence shown in Fig. 1, F(t) (from Eq. (2))
quickly reaches a minimum value of F = �cGd. It then remains at
that value for a time D, after which, it returns to zero. Over the
time D, when velocity is effectively sampled, gas molecules ini-
tially encoded at each location r0 will exhibit some average value
that can be determined directly from hv(t)i in Fig. 4. Since the high-
er order cumulants describe the statistical deviation dv from this
average, contributions in Eq. (3) can be expressed in powers of
Fdv [20]. If dv is slowly varying over D, the nth term in Eq. (3) is
then of the order (1/n!)(dvDF)n when n > 1. To validate this scaling
relationship, consider the shaded region in Fig. 4. There, it is seen
that the flow velocity for diffusing gas at different locations
changes by an amount (dv) that is �20 cm/s when F(t) is non-zero.
Since D = 0.001 s and F = �cGd = 24.5 radian per cm, the third-or-
der (n = 3) contribution to Eq. (3) is estimated (i.e. (1/3!)(dv D
F)3) to be �0.019 radian. Given a = cGDd in Eq. (20), and this is
0.024 radian � s/cm under the specified conditions, n = 3 contribu-
tions to the apparent axial velocity (3mapp) in Eq. (20) are then pre-
dicted to be �0.8 cm/s. Comparison with the actual third-order
term in Fig. 5 shows that this is very nearly what is calculated;
thereby, validating proposed scaling.

Fig. 5 shows that third-order contributions to apparent flow are
only about 2% of the first-order term. Because this is smaller than
experimental uncertainty, higher order contributions are safely ne-
glected. Importantly, the same scaling arguments hold for estimat-
ing relative contributions to the apparent diffusion coefficient
(Dapp) defined through Eq. (21). In this case (1/n!)(dv DF)n is about
0.12 for n = 2 and �0.002 for n = 4. Approximating Dapp by only the
second-order (n = 2) term in the cumulant expansion is therefore
again accurate to about 2%.

The above considerations justify approximation of the cumulant
expansion using the first and second terms for calculating apparent
flow and diffusion, respectively. In practice, this is termed a Gauss-
ian approximation because all cumulants higher than second-order
are exactly zero for a Gaussian random process [23]. Since this can
be achieved experimentally simply by adjusting D and/or F, its
importance to apparent transport studies cannot be over empha-
sized [20,21].

4.2. Apparent 3He gas transport and size effects in a straight pipe

Apparent 3He velocity measurements in a straight pipe are
summarized in Fig. 6. Generally, excellent agreement is found be-
tween experimental data and predictions based on a first-order
(n = 1) approximation to Eq. (20). Images acquired using different
D values illustrate how blurring of laminar flow structure becomes
more severe as time is lengthened to apply motion-sensitizing gra-
dients. Nevertheless, flow rates (cc/s) determined by integrating
the apparent velocity (mapp) over the pipe cross-section remain
constant and are generally within �10% of experimental values.
Measurements of apparent 3He velocity therefore provide a quan-
titative basis for measuring regional flow rates—even when flow
structure is blurred in small conduits. This is predicted mathemat-
ically simply by integrating the first-order approximation to Eq.
(20) over the pipe’s cross-section and noting the diffusion propaga-
tor is normalized. The result is that flow rates measured from
imaging data are always equal to the value predicted from the Na-
vier–Stokes solution in Eq. (7).

Laminar flow structure in Fig. 6 shows that the degree of blur-
ring depends on the binary gas mixture—being more pronounced
when 3He is diluted in N2 rather than with C3F8. Physically, this
is expected since 3He diffusion in N2 (�0.78 cm2/s) is about twice
as fast as for 3He in C3F8 (�0.36 cm2/s). Since the diffusion coeffi-
cient for HP 129Xe is �10 times lower (1), it is potentially useful
if the goal is to visualize more laminar flow structure in small con-
duits. Its lower sensitivity relative to 3He, however, would inevita-
bly reduce achievable resolution so some compromises would be
required.

Measured and predicted values for apparent axial 3He diffu-
sion are summarized in Fig. 7. Like with apparent flow, close
agreement is observed between experimental data and formu-
lated predictions. Images acquired using different D values illus-
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trate how axial diffusion is enhanced as more time is allowed for
molecules to traverse multiple streamlines. Not surprisingly, the
precise enhancement is seen to vary with gas mixture. Less ex-
pected is that the apparent diffusion exhibits a laminar-like
structure that reaches a maximum about midway between the
pipe’s center and wall. Generally, this reflects complex gas
dynamics and the behavior of the second-order cumulant in
Eq. (5).

Predicted images of apparent flow velocity in pipes of different
size are shown in Fig. 8. These simulated results suggest that lam-
inar structure should be clearly observed in larger pipes with sizes
comparable to those in human pulmonary airways. Significant
blurring of laminar flow is, however, expected in smaller air-
ways—like those in the major airways of rodents.

4.3. 2D and 3D pulmonary airflow imaging in ventilated rats

Fig. 9 shows measured 3He gas flow in 2D constant-time images
of rat pulmonary airways. Because a tracheotomy was employed,
Fig. 7. Apparent axial 3He gas diffusion during laminar flow in a straight, 3.2-mm
diameter tube. Flow conditions are the same as in Fig. 6, and predictions (for Dapp)
are based on a second-order (n = 2) approximation. In each image, the black plot
shows the radial profile for axial diffusion across the tube diameter. Uncertainty in
measured diffusion is estimated from known b-values and the measured signal-to-
noise ratio in acquired images [41]. For D = 1.0 ms uncertainty is estimated to be
±0.03 cm2/s, and for D = 4.0 ms it is ±0.15 cm2/s. All plots include a contribution of D
that represents the free gas diffusion coefficient in the absence of flow. For 3He in N2

D = 0.78 ± 0.04 cm2/s, and for 3He in C3F8 D = 0.36 ± 0.02 cm2/s.

Fig. 8. Predicted apparent axial 3He gas flow in tubes of different diameter (2a).
Predictions are based on a first-order (n = 1) approximation (1mapp) using the
gradient parameters specified in Fig. 5. Top row from left to right: Navier–Stokes
prediction for a straight pipe of any radius, 1mapp for a = 11 mm, and a = 6 mm.
Bottom row: 1mapp for a = 3, a = 1.5, and a = 0.5 mm. In each image, the black plot
shows the radial profile for axial flow across the tube diameter.
inhaled gas flowed straight into the rat trachea. Consequently,
measured flow in the trachea was similar to that seen in a straight
pipe of comparable size. Similarities illustrated in Fig. 9B include a
non-zero axial velocity at the edge of the trachea, and a blurred
laminar flow profile.

Although some flow structure is evident in the rat trachea,
Fig. 9C shows that nothing comparable is observed at the lung’s
first bifurcation. Analysis of 3D flow data suggests that this is
mainly due to not measuring all the vector flow components. Be-
fore this is examined, however, the more obvious is first noted.
Namely, that flow at the bifurcation is significantly slower than
in the trachea. Physically, this is because mass conservation re-
quires flow to slow when it splits to fill the right and left bronchi.
During inhalation, this is expected to occur at every successive
bifurcation—as gas moves deeper down the airway tree. A high de-
gree of correlation is therefore anticipated between measured gas
speed and airway branching structure.

Fig. 10A shows a maximum intensity projection of 3D rat pul-
monary airways observed using radial-hybrid 3He imaging. Results
provide a detailed view of branching topology that feeds inhaled
air to each of the rat’s five lung lobes [42]. More remarkable, how-
ever, is that all major airways are distinguished in Fig. 10B, where
effects on the calculated velocity magnitude resulting from the
combination of measured components are shown in full 3D. Flow
data were acquired in the same rat; thereby, providing detailed
information about both airway structure and inhaled gas
dynamics.

Besides flow splitting, gas streaming is also observed in 3D data.
Generally, streaming is characterized by a narrow region of faster
flow along the airway’s outside radius of curvature. In humans, this
has been visualized in 2D images of 3He flow through the trachea
[2]. Fig. 10C shows similar transport in the rat trachea. Presumably,
Fig. 9. 2D CTI of pulmonary airflow in a 220 g rat. (A) Sagittal proton image
showing slice locations for 3He flow visualization. (B) Left: measured flow speed
normal to the slice plane in the rat trachea. (B) Right: simulated apparent velocity in
a straight pipe of comparable size and volume flow (�2 cc/s). White traces show
flow profiles across the center and the bold scale bar represents 1 mm. (C) Flow
speed normal to the slice plane in the bronchi. All images were acquired using a
3 mm thick slice, a 10� flip angle, a square FOV 1.0 cm on a side, and an 8 ms TR. The
color scale shows measured flow speed (cm/s) and uncertainty is estimated to be
±10 cm/s using established methods [40].



Fig. 10. 3D imaging of pulmonary structure and flow in a 322 g rat. (A) Maximum
intensity projection of 3D airway structure visualized with high-resolution, hybrid,
radial imaging. Colorized airways highlight main branches feeding the rat lung’s
five lobes. Raw image data is zero-filled once along each dimension. (B) 3D
rendering of velocity magnitude calculated from lower resolution, motion-sensi-
tized, radial-hybrid images. The color scale shows calculated velocity magnitude
(cm/s) and uncertainty is estimated to be ±2 cm/s using established methods [40].
Flow results are not rendered using the same software employed for (A), and as a
consequence, viewing angles are not strictly the same. No zero-fill is employed
prior to reconstructing flow images. It is also noted that flow is not analyzed higher
up in the trachea because signal drops off more severely due to the dilution of 3He
from the extra O2 push used for flow measurements (see Section 3.4). (C) 3D flow
viewed from the same perspective as the sagittal image shown in Fig. 9A.
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this was not observed in initial 2D experiments because use of a
tracheotomy insured that gas flowed straight into the lung. With
oral intubation and the rat in a supine position, gas must travel
along a more curved path—as illustrated in Fig. 10C. Slice-by-slice
inspection of 3D flow data shows that streaming in the trachea
continues down the entire branching structure along the same out-
side edge. It was also found that streaming was most evident when
all the vector components are acquired. Conceptually, this is not
surprising since airflow in deeper branches is generally oblique rel-
ative to the laboratory frame in which motion-sensitizing gradi-
ents are applied. In this context, 3D vector mapping is critical to
completely capture actual gas dynamics.

The measured flow speed shown in Fig. 10B and C is a scalar
representation of the full vector flow field. Generally, this pro-
vides a quantitative view of pulmonary gas delivery not previ-
ously seen. Although measured velocity is inevitably blurred,
significant slowing due to major airway branching is still ob-
served. Like in straight pipes, it is also expected that measured
flow rates in each branch are quantitative. To illustrate this,
gas flow (cc/s) was measured in each of the five colored airways
shown in Fig. 10A. Flow was determined in two steps. First, data
in Fig. 10A was used for measuring the cross sectional area for
each airway feeding a different lung lobe. Gas flow was then cal-
culated using the vector dot product between the measured area,
a unit vector normal to the airway’s cross section, and the aver-
age gas velocity vector that is measured at the same location
from lower resolution data used for generating Fig. 10B–C. The
results are 0.86 ± 0.04, 0.70 ± 0.07, 0.18 ± 0.01, 0.22 ± 0.03, and
0.21 ± 0.03 cc/s for flow in the left, right caudal, right middle,
right cranial, and accessory lobes, respectively. The total flow
determined from imaging data is therefore 2.17 ± 0.18 cc/s. Prior
to imaging, the actual flow rate was measured to be
2.31 ± 0.02 cc/s using a calibrated pneumotach. Total flow mea-
sured with MRI is therefore in good agreement (within 6%) with
known ventilation settings. Results might therefore provide a
quantitative basis for measuring lobar ventilation in pre-clinical
animal models. If possible, it may then become feasible to mon-
itor changes with disease, and to relate these to alterations in
down stream lung compliance.

Observation of gas streaming in the rat airways generally high-
lights that some laminar flow structure is discernable. In animal
models, this could be useful for understanding the deposition of in-
haled materials. In the past, CFD modeling has been used to begin
understanding related issues. A full CFD model of the rat respira-
tory system has, however, never been developed or tested. The
work described here represents an integral part of our ongoing ef-
forts to exploit MR imaging for developing and validating CFD
models for the rat respiratory tract [6]. Current work is aimed at
exploiting the analytical techniques described here to predict
apparent 3He flow from CFD predictions; thereby, providing a basis
for future comparisons in live animals.

5. Conclusions

An analytical description of apparent gas transport accurately
predicts measured 3He gas dynamics in straight pipes, and shows
that diffusion-mediated effects blur laminar flow structure in ro-
dent-sized airways. Nevertheless, 3D airflow imaging in rodents
reveals a detailed picture of lobar airflow not previously seen. This
includes flow splitting from airway branching as well as flow
streaming along the outside radius of curvature.
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Appendix

Angular contributions to Eq. (20) are generally of the following
form—Z 2p

h1¼0
dh1

Z 2p

h2¼0
dh2 � � �

Z 2p

hn¼0
dhn cosðjðh1 � h2ÞÞ

cosðj0ðh2 � h3ÞÞ � � � cosðj00ðhn � h0ÞÞ;
ðA:1Þ

where j, j0, and j00 represent summation indices from expansions like
that defined in Eq. (15). Simplification is achieved by first noting—

cosðjðh1 � h2ÞÞ ¼ cosðjh1Þ cosðjh2Þ þ Sinðjh1ÞSinðjh2Þ: ðA:2Þ

Integration of Eq. (A.2) over h1 then gives 2p for j = 0 and is zero
otherwise. The series therefore reduces to—

2p
Z 2p

h2¼0
dh2 � � �

Z 2p

hn¼0
dhn cosðj0ðh2 � h3ÞÞ � � � cosðj00ðhn � h0ÞÞ: ðA:3Þ
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Expanding cos(j0(h2 � h3)) like in Eq. (A.2) and integrating over h2 is
then again 2p for j0 = 0 and zero otherwise. Repeating the procedure
for each successive cos term in (A.1) therefore collapses the entire
series to give (2p)n if all j’s are 0. For other j-values the integral ser-
ies is zero.
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